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Linear regression

yi = x⊤i β+ σεi i = 1, . . . , n

▶ Response yi

▶ Predictors xi = (xi1, . . . , xip)
⊤ ∈ Rp

▶ Independent and identically distributed errors εi
▶ Vector of regression coefficients β ∈ Rp
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Centering and scaling
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Notation:

y =


y1
...

yn

 and X =


x⊤1
...

x⊤n

 =

x11 x12 . . . x1p
...

...
. . .

...
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Least squares

The classical estimator is the least squares estimator (Gauss,
1795) which solves

min
β∈Rp

n∑
i=1

(yi − x⊤i β)
2 = min

β∈Rp
∥y − Xβ∥2

▶ Optimal when the errors are i.i.d. normal
▶ Easy to compute
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High dimensional data

▶ Data with p > n are common nowadays in fields like
chemometrics, genomics, and many others.

▶ Bias-variance trade-off
▶ Larger models have less bias but more variance.
▶ Unless n is very large (n/p > 20, say) trading-off some bias for

a decrease in variance may be reasonable.

▶ Sparsity: many of the candidate variables included in the
model are not very useful.

↪→ A possible approach: fit LS to a reduced subset of predictors,
but which one?
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Best subset selection (Garside, 1965)

min
β∈Rp
∥y − Xβ∥22 subject to ∥β∥0 ≤ t

▶ t ≤ min(n − 1, p) is the number of nonzero coefficients in β.
▶ t is often chosen via cross-validation. (Beale et al., 1967)
▶ Trade a small bias for a large reduction in variance.
▶ Highly interpretable.
▶ Nonconvex optimization problem, exact solution is not

feasible. (Welch, 1982)
▶ Modern algorithms for high quality approximate solutions.

(Hazimeh and Mazumder, 2020)
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Ensemble methods

f̂(x) = f̄(x) =
G∑

g=1

f̂g(x)/G

▶ High prediction accuracy.
▶ Mean squared prediction error (Ueda and Nakano, 1996):

MSPE
[̂
f
]
= Bias

[̄
f
]2
+ Var

[̄
f
]
+ σ2

with

Bias
[̄
f
]
= Bias and Var

[̄
f
]
=

1
G

Var +
G − 1

G
Cov

▶ Aggregate G diverse models.
▶ Lack interpretability.
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Data driven ensembles

▶ Ensemble a relatively small number of sparse models.
▶ Each model provides a good fit to the data.
▶ The models are learned simultaneously from the data.
▶ Diversity between models is induced by restricting the sharing

of predictors between different models.
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Best split selection

Best split selection aims to find G models yi = x⊤i β
g; 1 ≤ g ≤ G

such that

min
β1,...,βG∈Rp

G∑
g=1

∥y − Xβg∥22 subject to

∥βg∥0 ≤ t , 1 ≤ g ≤ G,

∥β ·j ∥0 ≤ u, 1 ≤ j ≤ p.

with β ·j = (β1
j , β

2
j , . . . , β

G
j )

T ∈ RG

▶ For t ≤ min(n − 1, p) the penalty ∥βg∥0 ≤ t imposes sparsity
on the individual models.

▶ For u ≤ G the penalty ∥β ·j ∥0 ≤ u induces diversity among the
models.

▶ Both t and u are selected in a data-driven manner.
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Best split selection

The ensemble model is obtained by

β̂ = β =
1
G

G∑
g=1

β̂
g
.

▶ The ensemble is an interpretable, sparse linear model!
▶ Finding the exact best split selection solution is a huge

combinatorial problem.

↪−→We need a good approximate algorithm.
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Algorithm for fixed t and u

▶ Initial solutions β̃
1
, . . . , β̃

G
.

▶ Apply projected subset gradient descent to the G models
cyclically until convergence.
For each model g an upper bound for the loss function

Ln (β
g |y,X) = ∥y − Xβg∥2

is given by its quadratic approximation

LQ
n

(
βg |y,X , β̃

g)
= Ln

(
β̃

g
|y,X
)
+∇βLn

(
β̃

g
|y,X
)T (
βg − β̃

g)
+

1
2

C
∥∥∥βg−β̃

g∥∥∥2
2

with C = 2∥XT X∥2.
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Projected subset gradient descent

For each model g we iteratively solve

min
βg

LQ
n

(
βg |y,X , β̃

g)
= min
βg

∥∥∥∥βg −
(
β̃

g
−

1
C
∇βLn

(
β̃

g
|y,X
) )∥∥∥∥2

2

which needs to be minimized under the constraints ∥βg∥0 ≤ t and
∥βj·∥0 ≤ u for 1 ≤ j ≤ p.
Let Sg contain all vectors β ∈ Rp whose components only differ
from zero for feasible predictors which are not yet included in u
other models, then

argmin
∥βg∥0≤t ,βg∈Sg

LQ
n

(
βg |y,X , β̃

g)
= P

(
β̃

g
−

1
C
∇βLn

(
β̃

g
|y,X
)
; Sg, t

)
P(v; S, t) is the projected subset operator which retains the t
largest elements in absolute value of the vector v that belong to
the set S.
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Initial solutions

▶ We run the algorithm for u = 1, . . . ,G (for a fixed t ).
▶ For u > 1 we use the solution at u − 1 as initial solution.

(warm starts)
▶ We repeat this procedure on a grid of t values (a subset of
{1, . . . , n − 1}).

▶ The optimal values of t and u are selected by CV.

↪−→We need to generate an initial solution for u = 1.
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Stepwise split selection
▶ For u = 1, the G models cannot share predictors.
▶ We generalize the stepwise forward selection procedure to

construct multiple models:

1. Set β̃
1
, . . . , β̃

G
= 0, i.e. all models are empty and take all

available predictors as initial set of candidate predictors.
2. Repeat until all models are saturated

(∥β̃
1
∥0 = · · · = ∥β̃

G
∥0 = n − 1) or no predictor yields a

sufficient improvement anymore
a. For each unsaturated model find the candidate predictor that

yields the largest improvement for this model and calculate the
p-value for this candidate predictor.

b. If the smallest p-value is below a threshold γ, then add the
candidate predictor to the corresponding model and remove it
from the set of candidate predictors.

3. Apply the lasso to each of the G models.
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The number of models

What is the effect of G on the performance of best split selection?

MSPE evaluated on a test set of size 2 000 (relative to σ2).

ζ = 0.1 ζ = 0.2 ζ = 0.4

G MSPE MSPE Cor MSPE MSPE Cor MSPE MSPE Cor

1 1.39 − − 1.30 − − 1.24 − −

2 1.29 1.56 0.85 1.31 1.55 0.87 1.28 1.56 0.84
3 1.21 1.65 0.82 1.23 1.62 0.85 1.21 1.55 0.85
4 1.23 1.77 0.80 1.20 1.70 0.83 1.19 1.65 0.83
5 1.19 1.80 0.79 1.16 1.72 0.82 1.15 1.63 0.83
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The number of models

What is the effect of G on the recall and precision of best split
selection?

▶ Recall: RC =

∑p
j=1 I(βj , 0, β̂j , 0)∑p

j=1 I(βj , 0)

▶ Precision: PR =

∑p
j=1 I(βj , 0, β̂j , 0)∑p

j=1 I(β̂j , 0)
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The number of models

What is the effect of G on the recall and precision of best split
selection?

ζ = 0.1 ζ = 0.2 ζ = 0.4

G RC PR RC PR RC PR

1 0.45 0.54 0.31 0.61 0.19 0.69

2 0.56 1.00 0.28 1.00 0.16 1.00
3 0.79 0.98 0.42 1.00 0.21 1.00
4 0.81 0.90 0.56 1.00 0.30 1.00
5 0.84 0.85 0.67 0.99 0.34 1.00
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Performance comparison

We compare the following methods in R

1. Stepwise forward regression (lars).

2. Lasso (glmnet).

3. EN: Elastic Net with α = 3/4 (glmnet).

4. Fast-BSS: Best subset selection (L0Learn).

5. Step-SplitReg (stepSplitReg).

6. SplitReg-Lasso (SplitReg).

7. SplitReg-EN with α = 3/4 (SplitReg).

8. Fast-BSpS: Best split selection with G = 5 (PSGD).

9. RGLM: Random GLM (RGLM).

10. RF: Random Forest (randomForest).

11. XGBoost: Extreme Gradient Boosting (xgboost).
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Simulation design
Model: yi = x′iβ0 + σϵi , 1 ≤ i ≤ n.
▶ n = 50 and p is 150 or 500.
▶ The number of active (i.e. nonzero) variables is p0 = [pζ] with
ζ ∈ {0.1, 0.2, 0.4}.

▶ The errors ϵi are standard normal distributed.
▶ The xi ∈ R

p are multivariate normal with zero mean and
covariance matrix Σ with 1 on the diagonal and
Scenario 1: All variables have correlation ρ with each other.
Scenario 2: Only active variables have correlation ρ with each
other.

▶ ρ ∈ {0.2, 0.5, 0.8}
▶ σ is chosen such that the signal to noise ratio

SNR = β′0Σβ0/σ
2 equals 1, 3 or 5.

▶ Performance is measured by averaging over N = 50
replicates.
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MSPE

MSPEs for Scenario 2 with ρ = 0.5, p = 500, n = 50, SNR = 5
and ζ = 0.4.
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Recall and precision

MSPEs for Scenario 2 with ρ = 0.5, p = 500, n = 50, SNR = 5
and ζ = 0.4.
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Average rank of methods over all settings

p = 500 p = 150 Overall Rank

Method MSPE RC PR MSPE RC PR MSPE RC PR

Stepwise 12.06 11.00 3.87 11.17 11.00 3.09 11.62 11.00 3.48

Lasso 7.20 9.81 4.17 6.50 9.78 3.67 6.85 9.80 3.92

EN 6.17 8.81 4.13 5.93 8.72 4.30 6.05 8.77 4.21

Fast-BSS 4.81 6.89 6.02 5.52 6.75 4.93 5.16 6.82 5.47

Step-SplitReg 9.07 1.85 10.26 6.96 5.21 8.96 8.02 3.53 9.61

SplitReg-Lasso 3.57 5.06 6.09 3.33 5.55 5.00 3.45 5.30 5.54

SplitReg-EN 2.85 3.89 5.57 2.74 4.60 5.41 2.80 4.25 5.49

Fast-BSpS 2.56 3.56 3.20 2.09 2.28 5.78 2.33 2.92 4.49

RGLM-5 12.24 3.24 8.46 12.69 1.46 9.50 12.46 2.35 8.98

RGLM-100 3.63 − − 6.50 − − 5.06 − −

RF-5 10.02 7.65 10.15 10.30 6.13 10.67 10.16 6.89 10.41

RF-500 5.69 − − 5.83 − − 5.76 − −

XGB 11.13 4.24 4.07 11.44 4.52 4.70 11.29 4.38 4.38
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Application

Bardet-Biedl syndrome (BBS) gene expression dataset (Li et al.,
2020)
▶ Data of 120 mammalian-eye tissue samples.
▶ Response: expression level of TRIM32 (tripartite

motif-containing protein 32).
▶ Predictors: expression levels of p = 200 relevant genes from

mammalian-eye tissue samples (Scheetz et al., 2006).
▶ We randomly split the full dataset N = 50 times into a training

set of size n = 30 and a test set of size m = 90.
▶ For Fast-BSpS we used G = 5 and the grids u ∈ {1, 2, 3, 4, 5}

and t ∈ {0.3n, 0.4n, 0.5n} = {9, 12, 15}.
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Application: MSPE

Method MSPE MSPE

Stepwise 0.84 (0.30) −

Lasso 0.65 (0.25) −

EN 0.63 (0.24) −

Fast-BSS 0.59 (0.18) −

Step-SplitReg 0.57 (0.19) 0.92 (0.22)
SplitReg-Lasso 0.63 (0.24) 0.65 (0.23)

SplitReg-EN 0.62 (0.23) 0.63 (0.23)
Fast-BSpS 0.45 (0.08) 0.60 (0.10)

RGLM 0.45 (0.10) 1.67 (0.35)
RF 0.67 (0.17) 1.03 (0.19)

XGB 0.84 (0.25) 1.04 (0.23)
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Application: important genes

Genes can be ranked in order of importance according to the
number of individual models they appear in. Let Ak denote the set
of genes that appears in at least k models, then we have

|A4| = 0, |A3| = 20, |A2| = 27, |A1| = 28.

▶ Fast-BSpS thus uses only 28 genes.
▶ 20 genes appear in 3 different models.
▶ 7 appear in two different models.
▶ 1 gene is used in only 1 model.
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Conclusion

▶ Best split selection yields a highly interpretable ensemble
model with excellent prediction accuracy.

▶ We developed an efficient approximate algorithm.
▶ R packages stepSplitReg and PSGD are available on CRAN.
▶ The framework can be extended to many settings.

Thank you for your attention!

Christidis, A.-A., Van Aelst, S., and Zamar, R. (2023). “Multi-Model
Subset Selection,” https://arxiv.org/abs/2204.08100.
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