KU LEUVEN

Subset Selection Ensembles

Stefan Van Aelst Anthony Christidis Ruben Zamar

KU Leuven, Department of Mathematics University of British Columbia, Department of Statistics SCRI 2023, Academia Sinica, Taiwan

KU LEUVEN

Linear regression

$$y_i = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \sigma \varepsilon_i \qquad i = 1, \dots, n$$

- Response y_i
- Predictors $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^\top \in \mathbb{R}^p$
- Independent and identically distributed errors ε_i
- Vector of regression coefficients $\boldsymbol{\beta} \in \mathbb{R}^{p}$

High-dim regression Sparse modeling Ensemble modeling Best split selection Stepwise split selection Performance Application

Centering and scaling

$$\frac{1}{n}\sum_{i=1}^{n}y_{i} = \frac{1}{n}\sum_{i=1}^{n}x_{ij} = 0 \qquad j = 1, \dots, p$$
$$\frac{1}{n}\sum_{i=1}^{n}y_{i}^{2} = \frac{1}{n}\sum_{i=1}^{n}x_{ij}^{2} = 1 \qquad j = 1, \dots, p$$

Notation:

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad \text{and} \quad \mathbf{X} = \begin{pmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_n^\top \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}$$

High-dim regression Sparse modeling Ensemble modeling Best split selection Stepwise split selection Performance Application

Least squares

The classical estimator is the least squares estimator (Gauss, 1795) which solves

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \sum_{i=1}^n (\boldsymbol{y}_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2 = \min_{\boldsymbol{\beta} \in \mathbb{R}^p} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}\|^2$$

- Optimal when the errors are i.i.d. normal
- Easy to compute

KU LEUVEN

High-dim regression Sparse modeling Ensemble modeling Best split selection Stepwise split selection Performance Application

High dimensional data

- Data with p > n are common nowadays in fields like chemometrics, genomics, and many others.
- Bias-variance trade-off
 - Larger models have less bias but more variance.
 - Unless n is very large (n/p > 20, say) trading-off some bias for a decrease in variance may be reasonable.
- Sparsity: many of the candidate variables included in the model are not very useful.
- → A possible approach: fit LS to a reduced subset of predictors, but which one?

Best subset selection (Garside, 1965)

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 \quad \text{subject to} \quad \| \boldsymbol{\beta} \|_0 \leq t$$

- $t \leq \min(n-1, p)$ is the number of nonzero coefficients in β .
- ▶ *t* is often chosen via cross-validation. (Beale et al., 1967)
- ► Trade a small bias for a large reduction in variance.
- Highly interpretable.
- Nonconvex optimization problem, exact solution is not feasible. (Welch, 1982)
- Modern algorithms for high quality approximate solutions. (Hazimeh and Mazumder, 2020)

High-dim regression Sparse modeling Ensemble modeling Best split selection Stepwise split selection Performance Application

Ensemble methods

$$\hat{f}(\mathbf{x}) = \bar{f}(\mathbf{x}) = \sum_{g=1}^{G} \hat{f}_g(\mathbf{x})/G$$

- High prediction accuracy.
- Mean squared prediction error (Ueda and Nakano, 1996):

$$\mathsf{MSPE}\left[\hat{f}\right] = \mathsf{Bias}\left[\bar{f}\right]^2 + \mathsf{Var}\left[\bar{f}\right] + \sigma^2$$

with

Bias
$$\left[\overline{f}\right] = \overline{\text{Bias}}$$
 and $\operatorname{Var}\left[\overline{f}\right] = \frac{1}{G}\overline{\operatorname{Var}} + \frac{G-1}{G}\overline{\operatorname{Cov}}$

- Aggregate G diverse models.
- Lack interpretability.

Data driven ensembles

- Ensemble a relatively small number of sparse models.
- Each model provides a good fit to the data.
- The models are learned simultaneously from the data.
- Diversity between models is induced by restricting the sharing of predictors between different models.

Best split selection

Best split selection aims to find *G* models $y_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}^g$; $1 \le g \le G$ such that

$$\min_{\boldsymbol{\beta}^1,\ldots,\boldsymbol{\beta}^G \in \mathbb{R}^p} \sum_{g=1}^G \||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}^g\|_2^2 \quad \text{subject to} \quad \begin{cases} \|\boldsymbol{\beta}^g\|_0 \leq t, & 1 \leq g \leq G, \\ \|\boldsymbol{\beta}_j^\cdot\|_0 \leq u, & 1 \leq j \leq p. \end{cases}$$

with
$$\boldsymbol{\beta}_{j} = (\beta_{j}^{1}, \beta_{j}^{2}, \dots, \beta_{j}^{G})^{T} \in \mathbb{R}^{G}$$

- For $t \le \min(n-1, p)$ the penalty $||\beta^g||_0 \le t$ imposes sparsity on the individual models.
- For u ≤ G the penalty ||β_j^{*}||₀ ≤ u induces diversity among the models.
- Both t and u are selected in a data-driven manner.

High-dim regression Sparse modeling Ensemble modeling Best split selection Stepwise split selection Performance Application

KU LEUVEN

Best split selection

The ensemble model is obtained by

$$\hat{oldsymbol{eta}} = \overline{oldsymbol{eta}} = rac{1}{G}\sum_{g=1}^G \hat{oldsymbol{eta}}^g.$$

- The ensemble is an interpretable, sparse linear model!
- Finding the exact best split selection solution is a huge combinatorial problem.
- \hookrightarrow We need a good approximate algorithm.

Algorithm for fixed t and u

- Initial solutions $\tilde{\beta}^1, \ldots, \tilde{\beta}^G$.
- Apply projected subset gradient descent to the *G* models cyclically until convergence.
 For each model *g* an upper bound for the loss function

$$\mathcal{L}_n(\boldsymbol{\beta}^g | \mathbf{y}, \mathbf{X}) = \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta}^g \|^2$$

is given by its quadratic approximation

 $\mathcal{L}_{n}^{Q}\left(\boldsymbol{\beta}^{g}|\mathbf{y},\boldsymbol{X},\tilde{\boldsymbol{\beta}}^{g}\right) = \mathcal{L}_{n}\left(\tilde{\boldsymbol{\beta}}^{g}|\mathbf{y},\boldsymbol{X}\right) + \nabla_{\boldsymbol{\beta}}\mathcal{L}_{n}\left(\tilde{\boldsymbol{\beta}}^{g}|\mathbf{y},\boldsymbol{X}\right)^{T}\left(\boldsymbol{\beta}^{g}-\tilde{\boldsymbol{\beta}}^{g}\right) + \frac{1}{2}C\left\|\boldsymbol{\beta}^{g}-\tilde{\boldsymbol{\beta}}^{g}\right\|_{2}^{2}$ with $C = 2\|\boldsymbol{X}^{T}\boldsymbol{X}\|_{2}.$

Projected subset gradient descent

For each model g we iteratively solve

$$\min_{\boldsymbol{\beta}^{g}} \mathcal{L}_{n}^{Q} \left(\boldsymbol{\beta}^{g} | \mathbf{y}, \mathbf{X}, \tilde{\boldsymbol{\beta}}^{g} \right) = \min_{\boldsymbol{\beta}^{g}} \left\| \boldsymbol{\beta}^{g} - \left(\tilde{\boldsymbol{\beta}}^{g} - \frac{1}{C} \nabla_{\boldsymbol{\beta}} \mathcal{L}_{n} \left(\tilde{\boldsymbol{\beta}}^{g} | \mathbf{y}, \mathbf{X} \right) \right) \right\|_{2}^{2}$$

which needs to be minimized under the constraints $\|\beta^g\|_0 \le t$ and $\|\beta_{j\cdot}\|_0 \le u$ for $1 \le j \le p$. Let S^g contain all vectors $\beta \in \mathbb{R}^p$ whose components only differ from zero for feasible predictors which are not yet included in u other models, then

$$\underset{\|\boldsymbol{\beta}^{g}\|_{0} \leq t, \boldsymbol{\beta}^{g} \in S^{g}}{\operatorname{argmin}} \mathcal{L}_{n}^{Q} \left(\boldsymbol{\beta}^{g} | \mathbf{y}, \mathbf{X}, \tilde{\boldsymbol{\beta}}^{g} \right) = \mathcal{P} \left(\tilde{\boldsymbol{\beta}}^{g} - \frac{1}{C} \nabla_{\boldsymbol{\beta}} \mathcal{L}_{n} \left(\tilde{\boldsymbol{\beta}}^{g} | \mathbf{y}, \mathbf{X} \right); \ S^{g}, t \right)$$

 $\mathcal{P}(v; S, t)$ is the projected subset operator which retains the *t* largest elements in absolute value of the vector *v* that belong to the set *S*.

Initial solutions

- We run the algorithm for u = 1, ..., G (for a fixed t).
- For u > 1 we use the solution at u − 1 as initial solution. (warm starts)
- We repeat this procedure on a grid of t values (a subset of $\{1, \ldots, n-1\}$).
- The optimal values of t and u are selected by CV.
- \hookrightarrow We need to generate an initial solution for u = 1.

KU LEUVEN

Stepwise split selection

- For u = 1, the *G* models cannot share predictors.
- We generalize the stepwise forward selection procedure to construct multiple models:
- 1. Set $\tilde{\boldsymbol{\beta}}^1, \dots, \tilde{\boldsymbol{\beta}}^G = \mathbf{0}$, i.e. all models are empty and take all available predictors as initial set of candidate predictors.
- 2. Repeat until all models are saturated $(||\tilde{\beta}^{1}||_{0} = \cdots = ||\tilde{\beta}^{G}||_{0} = n-1)$ or no predictor yields a sufficient improvement anymore
 - a. For each unsaturated model find the candidate predictor that yields the largest improvement for this model and calculate the p-value for this candidate predictor.
 - b. If the smallest p-value is below a threshold γ , then add the candidate predictor to the corresponding model and remove it from the set of candidate predictors.
- 3. Apply the lasso to each of the *G* models.

The number of models

What is the effect of *G* on the performance of best split selection? MSPE evaluated on a test set of size 2 000 (relative to σ^2).

_	$\zeta = 0.1$				$\zeta=$ 0.2			$\zeta=$ 0.4		
G	MSPE	MSPE	Cor	MSPE	MSPE	Cor	MSPE	MSPE	Cor	
1	1.39	_	-	1.30	_	-	1.24	_	-	
2	1.29	1.56	0.85	1.31	1.55	0.87	1.28	1.56	0.84	
3	1.21	1.65	0.82	1.23	1.62	0.85	1.21	1.55	0.85	
4	1.23	1.77	0.80	1.20	1.70	0.83	1.19	1.65	0.83	
5	1.19	1.80	0.79	1.16	1.72	0.82	1.15	1.63	0.83	

The number of models

What is the effect of *G* on the recall and precision of best split selection?

• Recall: RC =
$$\frac{\sum_{j=1}^{p} \mathbb{I}(\beta_j \neq 0, \hat{\beta}_j \neq 0)}{\sum_{j=1}^{p} \mathbb{I}(\beta_j \neq 0)}$$

• Precision: PR =
$$\frac{\sum_{j=1}^{p} \mathbb{I}(\beta_j \neq 0, \hat{\beta}_j \neq 0)}{\sum_{j=1}^{p} \mathbb{I}(\hat{\beta}_j \neq 0)}$$

The number of models

What is the effect of *G* on the recall and precision of best split selection?

	$\zeta =$	0.1	$\zeta =$	0.2	<i>ζ</i> = 0.4		
G	RC	PR	RC	PR	RC	PR	
1	0.45	0.54	0.31	0.61	0.19	0.69	
2	0.56	1.00	0.28	1.00	0.16	1.00	
3	0.79	0.98	0.42	1.00	0.21	1.00	
4	0.81	0.90	0.56	1.00	0.30	1.00	
5	0.84	0.85	0.67	0.99	0.34	1.00	

KU LEUVEN

Performance comparison

We compare the following methods in R

- 1. Stepwise forward regression (lars).
- 2. Lasso (glmnet).
- 3. **EN**: Elastic Net with $\alpha = 3/4$ (glmnet).
- 4. Fast-BSS: Best subset selection (L0Learn).
- 5. **Step-SplitReg** (stepSplitReg).
- 6. SplitReg-Lasso (SplitReg).
- 7. **SplitReg-EN** with $\alpha = 3/4$ (SplitReg).
- 8. **Fast-BSpS**: Best split selection with G = 5 (PSGD).
- 9. RGLM: Random GLM (RGLM).
- 10. **RF**: Random Forest (randomForest).
- 11. XGBoost: Extreme Gradient Boosting (xgboost).

Simulation design

Model: $y_i = \mathbf{x}'_i \boldsymbol{\beta}_0 + \sigma \epsilon_i, \quad 1 \le i \le n.$

- n = 50 and p is 150 or 500.
- The number of active (i.e. nonzero) variables is $p_0 = [p\zeta]$ with $\zeta \in \{0.1, 0.2, 0.4\}$.
- The errors ϵ_i are standard normal distributed.
- The x_i ∈ ℝ^ρ are multivariate normal with zero mean and covariance matrix Σ with 1 on the diagonal and
 Scenario 1: All variables have correlation ρ with each other.
 Scenario 2: Only active variables have correlation ρ with each other.
- *ρ* ∈ {0.2, 0.5, 0.8}
- σ is chosen such that the signal to noise ratio SNR = $\beta'_0 \Sigma \beta_0 / \sigma^2$ equals 1, 3 or 5.
- Performance is measured by averaging over N = 50 replicates.

KU LEUVEN

MSPE

🛱 Sparse 🛱 Ensemble

MSPEs for Scenario 2 with $\rho = 0.5$, p = 500, n = 50, SNR = 5 and $\zeta = 0.4$.

High-dim regression Sparse modeling Ensemble modeling Best split selection Stepwise split selection Performance Application

KU LEUVEN

Recall and precision

🛑 RC 🛑 PR

MSPEs for Scenario 2 with $\rho = 0.5$, p = 500, n = 50, SNR = 5 and $\zeta = 0.4$.

High-dim regression Sparse modeling Ensemble modeling Best split selection Stepwise split selection Performance Application

Average rank of methods over all settings

	p=500				<i>p</i> = 150			Overall Rank		
Method	MSPE	RC	PR	MSPE	RC	PR	MSPE	RC	PR	
Stepwise	12.06	11.00	3.87	11.17	11.00	3.09	11.62	11.00	3.48	
Lasso	7.20	9.81	4.17	6.50	9.78	3.67	6.85	9.80	3.92	
EN	6.17	8.81	4.13	5.93	8.72	4.30	6.05	8.77	4.21	
Fast-BSS	4.81	6.89	6.02	5.52	6.75	4.93	5.16	6.82	5.47	
Step-SplitReg	9.07	1.85	10.26	6.96	5.21	8.96	8.02	3.53	9.61	
SplitReg-Lasso	3.57	5.06	6.09	3.33	5.55	5.00	3.45	5.30	5.54	
SplitReg-EN	2.85	3.89	5.57	2.74	4.60	5.41	2.80	4.25	5.49	
Fast-BSpS	2.56	3.56	3.20	2.09	2.28	5.78	2.33	2.92	4.49	
RGLM-5	12.24	3.24	8.46	12.69	1.46	9.50	12.46	2.35	8.98	
RGLM-100	3.63	-	-	6.50	-	-	5.06	-	-	
RF-5	10.02	7.65	10.15	10.30	6.13	10.67	10.16	6.89	10.41	
RF-500	5.69	-	-	5.83	-	-	5.76	-	-	
XGB	11.13	4.24	4.07	11.44	4.52	4.70	11.29	4.38	4.38	

KU LEUVEN

Application

Bardet-Biedl syndrome (BBS) gene expression dataset (Li et al., 2020)

- Data of 120 mammalian-eye tissue samples.
- Response: expression level of TRIM32 (tripartite motif-containing protein 32).
- Predictors: expression levels of p = 200 relevant genes from mammalian-eye tissue samples (Scheetz et al., 2006).
- ▶ We randomly split the full dataset N = 50 times into a training set of size n = 30 and a test set of size m = 90.
- For Fast-BSpS we used G = 5 and the grids u ∈ {1,2,3,4,5} and t ∈ {0.3n, 0.4n, 0.5n} = {9, 12, 15}.

High-dim regression Sparse modeling Ensemble modeling Best split selection Stepwise split selection Performance Application

Application: MSPE

Method	MSPE	MSPE
Stepwise	0 84 (0 30)	_
Lasso	0.65 (0.25)	_
EN	0.63 (0.24)	_
Fast-BSS	0.59 (0.18)	-
Step-SplitReg	0.57 (0.19)	0.92 (0.22)
SplitReg-Lasso	0.63 (0.24)	0.65 (0.23)
SplitReg-EN	0.62 (0.23)	0.63 (0.23)
Fast-BSpS	0.45 (0.08)	0.60 (0.10)
RGLM	0.45 (0.10)	1.67 (0.35)
RF	0.67 (0.17)	1.03 (0.19)
XGB	0.84 (0.25)	1.04 (0.23)

Application: important genes

Genes can be ranked in order of importance according to the number of individual models they appear in. Let A_k denote the set of genes that appears in at least k models, then we have

 $|A_4| = 0, |A_3| = 20, |A_2| = 27, |A_1| = 28.$

- Fast-BSpS thus uses only 28 genes.
- 20 genes appear in 3 different models.
- 7 appear in two different models.
- 1 gene is used in only 1 model.

Conclusion

- Best split selection yields a highly interpretable ensemble model with excellent prediction accuracy.
- We developed an efficient approximate algorithm.
- R packages stepSplitReg and PSGD are available on CRAN.
- The framework can be extended to many settings.

Conclusion

- Best split selection yields a highly interpretable ensemble model with excellent prediction accuracy.
- We developed an efficient approximate algorithm.
- R packages stepSplitReg and PSGD are available on CRAN.
- The framework can be extended to many settings.

Thank you for your attention!

Christidis, A.-A., Van Aelst, S., and Zamar, R. (2023). "Multi-Model Subset Selection," https://arxiv.org/abs/2204.08100.

High-dim regression Sparse modeling Ensemble modeling Best split selection Stepwise split selection Performance Application